Discretization and anti-discretization of rearrangement-invariant norms
نویسندگان
چکیده
منابع مشابه
Discretization and Anti-discretization of Rearrangement-invariant Norms
Abstract We develop a new method of discretization and anti-discretization of weighted inequalities which we apply to norms in classical Lorentz spaces and to spaces endowed with the so-called Hilbert norm. Main applications of our results include new integral conditions characterizing embeddings Γp(v) ↪→ Γq(w) and Γp(v) ↪→ Λq(w) and an integral characterization of the associate space to Γp(v),...
متن کاملInvariant Discretization Schemes Using Evolution–Projection Techniques
Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are gene...
متن کاملDiscretization-invariant Bayesian Inversion and Besov Space Priors
Bayesian solution of an inverse problem for indirect measurement M = AU + E is considered, where U is a function on a domain of R. Here A is a smoothing linear operator and E is Gaussian white noise. The data is a realization mk of the random variable Mk = PkAU + PkE, where Pk is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is...
متن کاملInvariant Tori of Dissipatively Perturbed Hamiltonian Systems under Symplectic Discretization
In a recent paper, Stooer showed that weakly attractive invariant tori of dissipative perturbations of integrable Hamiltonian systems persist under symplectic numerical discretizations, under a very weak restriction on the step size. Stooer's proof works directly with the discrete scheme. In this note we show how such a result, together with approximation estimates, can be obtained by combining...
متن کاملSymmetry preserving discretization of SL(2,R) invariant equations
Symmetry preserving discretization of SL(2,R) invariant equations Anne Bourlioux a, Raphaël Rebelo b,c and Pavel Winternitz a,b a Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada. E-mail: [email protected] b Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-ville, Mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 2003
ISSN: 0214-1493
DOI: 10.5565/publmat_47203_02